Горячий ветер 2022

Коломенский кайт клуб "Семь ветров" при поддержке Комитета по физической…

Как Валерий Шувалов снег убирал в 2022 году

Руководитель администрации города Валерий Шувалов проверил лично, как происходит расчистка…

В доме красногорского стрелка нашли долговые расписки Рассказова

В доме убийцы нашли черную бухгалтерию, где фигурируют крупные суммы,…

Дальнобойщики против "Платона"

Дальнобойщики бастуют по всей России. «Недовольство растет. Власти это замалчивают».…

«
»

Инструменты для проверки подлинности фотоконтента. Проверить на подлинность фото


Инструменты для проверки подлинности фотоконтента

Сегодня не только журналистам, но и обычным пользователям приходится иметь дело с большим количеством слухов, фейковых новостей и фальшивых фотографий — профессиональные медиа часто и сами участвуют в их распространении, непреднамеренное вводя в заблуждение читателей. После этого доверие к СМИ может падать, особенно опасно распространять ложные материалы при острых ситуациях в стране или стихийных бедствиях.

Интернет, с одной стороны, увеличивает количество ложной информации (в первую очередь, речь идет о данных, взятых из соцсетей), а с другой — предоставляет много цифровых инструментов для ее проверки. С помощью ряда  онлайн-инструментов можно проверить на подлинность фотографии, «вытянуть» из них как можно больше данных и найти больше информации о человеке:

Findexif.com — бесплатный сервис, на который можно загрузить фотографию или дать ссылку на нее — он определит EXIF-данные (сведения, когда было сделано фото, каким устройством, параметры изображения, для некоторых фото можно определить и место съемки).

Foto Forensics — веб-сайт, который может сделать error level analysis (ELA), то есть найти области «дорисованные» на изображении или вставлены в него при редактировании. После обработки программа выдает фотографию, где редактируемые фрагменты будут выделяться на фоне других. Кроме того, программа также предоставит EXIF- данные фотографии.

Google Search by Image — обратный поиск изображений, сюда можно загрузить фото, чтобы найти его оригинальный источник и посмотреть, где оно еще публиковалось .

TinEye — еще один инструмент для обратного поиска.

JPEGSnoop — программа, которая устанавливается на компьютер (работает только для Windows), также позволяет посмотреть метаданные не только изображений, но и форматов AVI, DNG, PDF, THM. Программу можно использовать для многих целей, например, она позволяет увидеть, редактировалось ли изображение, выявить ошибки в поврежденном файле т.п.

Алгоритм проверки изображения
Установить авторство

Установить автора либо первоисточник фотографии. Наиболее очевидный и обычно наиболее эффективный путь сделать это — связаться с тем, кто загрузил фотографию или прислал в редакцию, и спросить, сам ли человек сделал фото. Также обязательно нужно поискать фотографию через обратный поиск изображений. Google показывает также похожие картинки, что иногда помогает увидеть, была ли фотография отредактирована. Ссылка на фото в большом разрешении, как правило, и является первоисточником.

Проверка личности

Необходимо проверить саму личность, которая распространяет информацию. Для того чтобы собрать о ней больше информации, есть несколько различных ресурсов, и хотя большинство из них создано для жителей США, есть и такие, которые будут полезны для разных стран. Например, Pipl.com — предназначен для поиска «интернет — следа» пользователя, помогает его идентифицировать, найти фотографии. Программа производит поиск во всех социальных американских сетях (Facebook, LinkedIn, MySpace) — для этого нужно ввести имя и фамилию латиницей. Особенность программы в том, что она ведет поиск по «глубокому интернету» (deepWeb), который игнорируется обычными поисковыми системами и недоступен для пользователей.

Дополнительный полезный ресурс WebMii — ищет ссылку с именем человека, дает рейтинг «веб — видимости», с помощью которого можно установить фейковые аккаунты. Благодаря инструменту каждый может найти упоминание своего имени на иностранных ресурсах.

Для поиска в Рунете можно использовать сервис people.yandex.ru.

Поиск и подтверждение геолокации

Следующим шагом в проверке фото должно быть подтверждение места, даты и приблизительного времени, когда было сделано фото. Легче спросить самого автора или попросить сделать его другие снимки этого места — если он доступен для связи. Далее проверить исходные данные с помощью указанных выше программ. Журналистам, которые хорошо разбираются в цифровой фотографии, будут понятны многочисленные параметры, предоставленные этой программой. Для остальных более нужная информация — это время, место съемки, фотоаппарат. Если метаданные недоступны, нужно внимательно изучить снимок: номера машин, погодные условия, ландшафт, стиль одежды, рекламные объявления, здания, магазины — эти детали помогут определить местность, а иногда и становятся свидетельством подделки.

В проверке фотографии есть еще один казалось бы очевидный момент — подтверждение, что фотография действительно изображает то, о чем заявлено. Ведь она может быть настоящей, а вот описание не будет соответствовать действительности. Так, во время урагана Сэнди в Твиттере распространяли такую фотографию:

На ней изображено, как будто во время шторма трое солдат стоят у мемориала неизвестному солдату. Но на самом деле фото было сделано месяцем ранее — установить это помог обратный поиск изображения.

Разобраться в локациях поможет Google Maps или Wikimapia (краудсорсинговая версия GoogleMaps). Полезный сайт Panoramio — здесь можно разместить фотографии, обозначив их географические координаты (сайт интегрирован с картами Google).

Geofeedia — инструмент «куратор социальных сетей», который агрегирует результаты не по ключевым словам или хэштегам, а по месту расположения, которое вы задаете. Сервис обрабатывает сообщения из Twitter, Flickr, Youtube, Instagram и Picasa, присланные с использованием GPS, и затем представляет их в виде коллажа. Сервис платный, бесплатной является только демо-версия.

Еще один способ проверить фото — посмотреть, какие погодные условия были в заявленном месте в конкретный день. Здесь полезной станет поисковая система Wolfram Alpha. Об этом инструменте стоит сказать подробнее — это даже не поисковая система, а база знаний с научным уклоном. Интеллектуальный робот, который может отвечать на самые разные вопросы. Но он ориентируется только в темах, касающихся точной, энциклопедической информации, а не текущих событий. Ссылок на другие сайты не предоставляет, а выдает уже готовый вариант ответа. Работать с Wolfram Alpha нужно на английском языке.

«Вольфрам Альфа» предназначен не только для проверки погоды, этот инструмент может быть полезным как в повседневной работе журналиста, так и для развлечения.

Старайтесь всесторонне изучать информацию, полученную из непроверенных источников. Да, возможно, данные окажутся поддельными, и вам не удастся опубликовать сенсационную новость. Зато вполне может получиться статья с разоблачением.

 Использована информация: ОблакоМедиа.ru

stockinfocus.ru

Как определить монтаж на фото :: Разоблачаем фейки, фотошоп и ретушь :: Блог Вастрик.ру

В 1855 году пионер портретной фотографии Оскар Рейландер сфотографировал себя несколько раз и наложил негативы друг на друга при печати. Получившееся двойное селфи считается первым фотомонтажом в истории. Наверное лайков тогда собрал, уух...

Теперь же каждый подросток с фотошопом, смартфоном и интернетом сможет даже лучше. Правда чаще всего эти коллажи неимоверно доставляют. А вот профессионалы научились скрывать свою работу весьма качественно. Это был вызов.

Совокупность методов анализа модифицированных изображений назвали Image Forensics, что можно перевести как «криминалистика изображений». В интернете существует куча сервисов, заявляющих, что они за два клика помогут определить подлинность фото. Особенно доставляют самые тупые, которые идут смотреть EXIF и если там нет оригинальных метаданных камеры начинают громко вопить «вероятно фото было модифицировано». И про них даже в New York Times пишут (а про тебя нет). Я пересмотрел около десятка сервисов и остановился на одном: Forensically. В нём реализовано большинство описанных в статье алгоритмов, я буду часто на него ссылаться. Все описанные методы названы оригинальными английскими названиями, чтобы не было путаницы.

Однако возможность загрузить свою фотку в какой-то сервис и посмотреть на красивые шумы не сделает из вас сыщика. Поначалу может быть трудно и непонятно, а первые эксперименты точно окажутся неудачными. У меня так же было. Тут как в спорте — нужен намётанный глаз и опыт как должно и не должно быть. Умение не просто смотреть на шумные картинки, а видеть еле заметные искажения в них.

Не существует 100% метода, позволяющего определить фейк. Но есть человеческие ошибки.

Найдет самые глупые косяки

Главный инструмент — наши глаза. Так что первым делом стоит открыть фото в любимом графическом редакторе или просмотрщике, поставить зум в 1000% внимательно втыкать в предположительное место монтажа. С этого начинается любой анализ. Чем более неопытный монтажер попался — тем проще будет найти косяки, артефакты и склейки. Иногда фейки настолько кривые, что можно нагуглить оригинал используя поиск по изображениям или заметив несоответствия в EXIF.

Иногда фейк палится без глубокого анализа. Как например фотография с акции феминисток 8 марта, датированная в EXIF вечером 7 марта. Ну и дождевой слив под баннером забыли прифотошопить. Хотя по другим параметрам фейк сделан вполне неплохо. Помимо этого, в любом уважающем себя редакторе есть инструменты для цветокоррекции. В Preview.app на маке они спрятаны в меню Tools > Adjust Color... Вытягивание различных ползунков поможет лучше разглядеть детали.

Brightness and contrast. Сделать темные области ярче, а яркие темнее. Теоретически поможет лучше разглядеть артефакты, склейки и другие места, которые неопытный фотошопер просто замазюкал темненьким и посчитал, что не заметят.

Color adjustment. Увеличивая насыщенность или яркость разных цветов, можно заметить неестественные переливы и границы склейки.

Иногда фейк палится игрой с уровнями и контрастом Invert. Часто помогает увидеть скрытую информацию в однотонных объектах.

Sharpen and blur. Добавление резкости поможет прочитать надписи на табличках, есть целые сервисы, которые могут побороть заблюренные области.

Normalization and histograms. Работа с гистограммой по сути объединяет сразу несколько методов в один. Если вы прошарены в графике — гистограммы будут серьезным оружием.

Даже если определить фейковость сразу не удалось, у вас уже могли появиться полезные наблюдения, чтобы перейти к следующим методам с страшными математическими названиями.

Найдет свежую кисть, деформацию, клонирование и вставку чужеродных частей

Реальные фотографии полны шума. От матрицы камеры или фотосканера, от алгоритмов сжатия или по естественным природным причинам. Графические редакторы же этот шум не создают, их инструменты живут в «идеальном мире», потому чаще всего «размазывают» шум оригинального изображения. Кроме того, два изображения чаще всего обладают разной степенью зашумленности.

Глаз не видит разницы на оригинале, но шумы приклеенных изображений отличаются уж очень очевидно Заметить шум глазом не так-то просто, но можно взять любой инструмент Noise Reduction и инвертировать его действие, оставив от фотографии только шум. Хорошо работает для свежеобработанных изображений и в случаях, когда автор решил, что нашел очень подходящие на вид изображения. Но легко обманывается, если знать как.

Поиграть самому можно здесь.

Как обмануть

Добавить своего шума. Самый очевидный вариант. Хочешь скрыть свои косяки — навали на фото столько шума, чтобы забить оригинальный.

Пережать JPEG. Уменьшение качества изображение в два раза делает шумы неразличимыми (вот исследование).

Возьмем любезно предоставленное Настенькой селфи и попробуем сделать модные большие губы для инстаграма (хотя куда уж больше) с помощью инструмента Liquify. Сверху — оригинальное фото, снизу — боевой штурмовик после Liquify и его уровни шума. Даже на такой небольшой модификации уже заметно, как шумы «расползлись» в направлении увеличения. Найдет свежие артефакты наложения изображений или текста

Каждый раз при сохранении картинки ваш редактор заново прогоняет её через кучу преобразований — конвертирует цвета, делит на блоки, усредняет значения пикселей, и.т.д. Он занимается этим даже если вы выбрали 100% качество при сохранении, так уж устроен алгоритм JPEG. Интересующиеся могут почитать про него глубокую статью полную косинусных преобразований.

Так как JPEG — формат сжатия с потерями, то при каждом сохранении растет количество математических усреднений, ошибок или более популярный термин — «артефактов». Два сохранения с 90% сжатием примерно эквивалентно одному с 81% по количеству этих самых артефактов. На практике это может принести пользу. Даже если зоркий глаз не видит разницы между 80% и 85% сжатием, то наверное есть инструменты, которые наглядно покажут это различие? Да, Error Level Analysis или ELA.

Фейки с наложениями чаще всего делают подыскав нужные изображения где-нибудь в гугле. Вероятность, что найденные изображения будут с одинаковым уровнем артефактов, ну, крайне мала. Социальные сети или даже специализированные хранилища фотографий всё равно пережимают изображения под себя при загрузке, чтобы не платить за хранение гигабайтов ваших селфи из отпуска. Обратное тоже верно — если вы накладываете на найденное в интернете изображение свежую фотографию со своей камеры, она будет заметно выделяться по качеству. Заметно не для глаза, а для ELA — он покажет разительно меньше артефактов на вашей новой фотографии.

ELA определил вклейку надписи на футболку. Таким результатам можно доверять сразу. Простота и известность делает ELA самым популярным методом работы мамкиных интернет-сыщиков, от чего его начинают пихать везде, где только могут. Как будто других методов просто не существует и ELA может объяснить всё. Тот же Bellingcat использует его чуть ли не в каждом втором своём расследовании. Хотелось немного остудить пыл всех услышавших новую умную аббревиатуру.

ELA — не панацея. Сфотографируйте летящую чайку на фоне ровного синего неба (ага, особенно в Москве), сохраните её в jpg и прогоните через анализатор ошибок. Результат покажет просто огромное количество артефактов на чайке и их полное отсутствие на фоне, из чего начинающие сразу сделают вывод — чайка прифотошоплена. Да что там начинающие, сама команда Bellingcat с этим бывало глупо и по-детски наёбывалась. Алгоритм JPEG достаточно чисто работает на ровных цветовых областях и градиентах, и куда больше ошибается на резких переходах — отсюда такой результат, а не из-за ваших домыслов.

Нет, Bellingcat. Это не significantly different error levels, а всего-лишь однотонно залитая область, которую JPEG сжимает без ошибок. На любой фотографии неба или облаков, будут такие же отличия. Таким макаром можно и до автобуса докопаться. Из-за растущей популярности Error Level Analysis я уже слышал призывы запретить и не принимать его всерьез. Не буду столь категоричен, лишь посоветую не бежать писать разоблачения, если ELA показал вам какие-то шумы на краях. ОН НЕ ТАК РАБОТАЕТ. Думайте головой и помните как JPEG устроен внутри. Вот если ELA очертил четкий квадрат там, где его не должно быть, либо заметил разительную разницу в шумах при неотличимости на глаз — наверное стоит задуматься. Не уверены — проверяйте другими методами.

Поиграть с ELA можно тут.

Как обмануть

Много раз пересохранить. Все свои манипуляции алгоритм JPEG делает внутри блоков максимум 8x8 пикселей. В теории нужно 64 раза пересохранить изображение, чтобы уровни ошибок стали неотличимы друг от друга. На практике же это происходит гораздо раньше, достаточно пересохранить картинку раз 10 и ELA, да и некоторые другие методы, больше не увидят ничего полезного.

Изменить размер. Чтобы не напрягаться с пересохранением можно поступить еще проще — отресайзить изображение на какой-нибудь коэффициент не кратный степени двойки. То есть в 2 раза (50%) уменьшить не подойдет, а вот что-нибудь типа на 83% — уже всё, никакой ELA больше не поможет.

Смонтировать из одного источника или из lossless-формата. Вы сфотографировали двух людей на свой фотоаппарат, или скачали фотографии из какого-нибудь блога, где автор скорее всего пересохранял их всего раз-два. Либо наложили друг на друга две PNG'шки. Во всех этих случаях ELA не покажет ничего интересного.

Монтаж, который я сделал за 1,5 минуты в фотошопе для прошлого выпуска рассылки. На первом сохранении вклеенный омоновец и наложенный текст светятся артефактами как гирлянды. Через 5 пережатий JPEG шумы начинают покрывать всю картинку и артефакты омоновца начинают сливаться с шумами других объектов. Но всё равно не до конца, тут уж нарочито очевидный монтаж. Найдет ретушь, компьютерную графику, хромакей, Liquify, Blur

В жизни свет никогда не падает на объекты абсолютно равномерно. Области ближе к источнику всегда ярче, дальше — темнее. Никакого расизма, только физика. Если разбить изображения на небольшие блоки, скажем 3x3 пикселя, то внутри каждого можно будет заметить переход от более темных пикселей к светлым. Примерно так:

Разбив картинку на блоки 3x3 можно нарисовать примерное направление к источнику света Направление этого перехода так и называется — градиент освещенности. Можно попробовать нарисовать кучу маленьких стрелочек на изображении и понаблюдать за их направлением. Мысленно нарисуем кучу маленьких стрелочек к источнику света На первом изображении свет падает сверху и стрелочки направлены хаотически — это характеризует рассеянный свет. Второе изображение — компьютерная графика, на ней свет падает слишком идеально, никаких шумов и отклонений как на настоящем фото. Третье изображение — фотография с резким переходом, в центре стрелочки массово смотрят в самую яркую сторону, а на фоне — рассеяны так же, как на первом фото.

Рисовать стрелочки хоть и наглядно, но мы физически не сможем изобразить все градиенты освещенности для каждого блока поверх картинки. Стрелочки займут всё изображение и мы не увидим ничего. Потому для большей наглядности придумали не рисовать их, а использовать цветовое кодирование. Для направления вектора понадобится две координаты, и еще одна для его длины — а у нас как раз есть для этого три цветовых компоненты — R, G, B. В итоге получатся вот такие карты освещенности.

Вместо стрелочек наглянее изобразить направление света с помощью цветового кодирования. Некоторые вещи становятся нагляднее: например на компьютерной графике (по центру) видны четкие границы объектов и целые плоскости ровной освещенности. На реальных фото такого не бывает. В реальной жизни нас окружает ограниченное число источников света. В помещении это лампы, вспышки, окна. В ясный день на улице чаще всего источник света только один — это Иисус, спаситель наш солнце. Если на карте освещенности находящиеся рядом объекты сильно отличаются по направлению падения света — у нас есть главный кандидат на монтаж. Рука ковбоя с рекламы Kenwood даже на глаз выглядит не очень натурально. Если посмотреть на карту освещенности (по центру), она и правда отличается по характеру освещения. ELA справа тоже намекает, что рука прифотошоплена. Как выяснится потом не только рука, но еще и голова и шляпа. Но еще лучше карты освещенности справляются с определением ретуши. Surface Blur, Liquify, Clone Stamp и другие любимые инструменты фотографов начинают светиться на картах освещенности как урановые ломы тихой весенней ночью. Нагляднее всего выглядит анализ фотографий из журналов или рекламных плакатов — там ретушеры не жалеют блюра и морфинга, а это непаханное поле для практики.

Лично я считаю карты освещенности одним из самых полезных методов, потому что он чаще всего срабатывает и мало кто знает как его обмануть. Поиграться можно здесь.

Как обмануть

Не знаю. Говорят помогает изменение яркости и насыщенности цветов по отдельности, но на бытовых фотографиях такие вещи всегда будут заметны глазу. Если вы знаете простой и действующий метод — расскажите в комментах под этим абзацем, всем будет интересно. Сиськи всегда лучший пример. Рекламный плакат PETA. Крест явно был прифотошоплен (вот блин), ретушер оставил тени под руками, но не добавил их под крестом — косяк. Зато полностью перерисовал «кожу» модели, её карта освещенности выглядит как у компьютерного рендера выше. ELA явно показывает фейковость креста и задаёт вопросы по поводу реальности крыльев. А я уже поверил, что это настоящий ангел! Везде обман! Пример из онлайн-магазина Ralph Lauren. Палится Liquify на обоих руках модели, замазанная какуля на плече, ремень нарисован почти заново, а вся кожа лица и рук подверглась сильному блюру. Силуэт на стене передаёт привет ретушеру и фотографу — кто-то косячит со светом :) Найдет копипаст, вытягивание и несоотвествие цветов, Healing Brush, Clone Stamp

Метод PCA или на русском «метод главных компонент». Чтобы ко мне не придрались, мол, слишком просто всё рассказываешь и наверное не шаришь, вот описание PCA для рептилоидов.

Метод главных компонент осуществляет переход к новой системе координат y1,...,ур в исходном пространстве признаков x1,...,xp которая является системой ортонормированных линейных комбинаций. Линейные комбинации выбираются таким образом, что среди всех возможных линейных нормированных комбинаций исходных признаков первая главная компонента обладает наибольшей дисперсией. Геометрически это выглядит как ориентация новой координатной оси у1 вдоль направления наибольшей вытянутости эллипсоида рассеивания объектов исследуемой выборки в пространстве признаков x1,...,xp. Вторая главная компонента имеет наибольшую дисперсию среди всех оставшихся линейных преобразований, некоррелированных с первой главной компонентой. Она интерпретируется как направление наибольшей вытянутости эллипсоида рассеивания, перпендикулярное первой главной компоненте. Следующие главные компоненты определяются по аналогичной схеме.

А теперь для людей: представьте, что цветовые компоненты R, G и B мы взяли как оси координат — каждая от 0 до 255. И на этом трехмерном графике точками отметили все пиксели, которые есть на нашем изображении. Получится что-то похожее на картинку ниже.

Линия вдоль и поперек колбасятины и есть главные компоненты этой колбасятины Можно заметить, что наши пиксели не рассосались по графику равномерно, а вытянулись в округлую колбасятину. Все реальные изображения так устроены, потому что science, bitches. Теперь мы можем построить новые оси — вдоль колбасятины (это самая главная) и две поперек — это и будут те самые «главные компоненты». Для каждого изображения набор цветов будет разным, колбасятина и главные компоненты будут направлены по-своему.

Так что вся эта математика нам дает? Дело в том, что если какие-то цвета на изображении стоят «не на своих местах» — они будут сильно выделяться из этого облака пикселей, то есть на карте PCA начнут светиться ярким белым цветом. Это может означать локальную цветокоррекцию или же полную вклейку. Диаграммы PCA может построить тот же Forensically. На них будет изображено расстояние от каждого пикселя картинки до плоскости 1, 2 и 3 главной компоненты. Так как расстояние — это число, то изображения будут черно-белыми.

PCA против Healing Brush. На фотографии действительно была замазана муха и даже несмотря на пережаты JPEG это место ярко видно на диаграмме. Но еще более полезным свойством PCA является то, что он превращает JPEG-артефакты в очень заметные «квадраты». Даже если вы обманули ELA из предыдущего пункта пережатиями и ресайзом, то PCA этим не проведешь — он работает с цветом. Иногда артефакты сразу видно, например если исходное изображение увеличивали для вклейки. В других случаях сматриваться придется чуть более внимательно, чтобы заметить разницу в квадратах на изображении.

Как видно из примеров, PCA не очень наглядный и требует ну уж очень сильно присматриваться к таким мелким косякам, которые вполне могут оказаться случайностями. Потому PCA редко используется в одиночку, его применяют как дополнение к другим.

Самому поиграться можно здесь.

Как обмануть

Заблюрить. Любой блюр смазывает соседние цвета и делает «колбасятину» более округлой. Хороший блюр сильно затруднит исследование по методу PCA.

Еще хитрее изменить размер. Хотя PCA и более устойчив к изменение размеров изображения, говорят можно попробовать подобрать такой процент, чтобы обмануть даже его.

Белые полоски на флаге США подозрительно отличаются от остальных белых частей. Синяя и красная штучки на скафандре тоже были сильно изменены. Но это еще не всё — если присмотреться на артефакты, то на фоне и в отражении в шлеме их меньше, чем на самом скафандре. Автор впоследствии подтвердил, что фон и шлем были добавлены уже после рендеринга. Найдет различия в резкости, отклонения в фокусе, ресайз

Дискретное вейвлет-преобразование очень чувствительно к резкости объектов в кадре. Если фотографии сняты на разные объективы, использовался зум или просто немного отличалась точка фокусировки — после DWT эти отличия будут намного виднее. То же самое произойдет, если у какого-то объекта в кадре изменяли размер — резкость таких частей будет заметно ниже.

Без лишних погружений в теорию сигналов, вейвлет — это такая простенькая волнушка, как на картинке ниже.

Их придумали лет 100 назад, чтобы приблизительно описывать аналоговые сигналы. Одну большую длинную волну представляли набором мелких вейвлетов, тогда некоторые её характеристики внезапно становилось проще анализировать, да и места чтобы хранить надо было меньше. На вейвлет-сжатии например был построен формат JPEG-2000, который к нашему времени (к счастью) сдох.

Картинка — это тоже двухмерный сигнал из цветных пикселей, а значит её можно разложить на вейвлеты. Для достаточно точного приближения изображения 800x600 требуется до 480000 вейвлетов на цветовой канал. Если уменьшать это количество — будет сильно падать резкость и цветопередача. Но что это даёт, кроме сжатия?

А вот что: вейвлеты приближают области с разной резкостью по-разному. Чем плавнее переходы — тем проще плавному по своей природе вейвлету его воспроизвести, а чтобы приблизить резкий переход — надо больше вейвлетов. Это как пытаться сделать из кучи шариков идеальный куб.

Вейвлет-сжатие на динозаврах. Верхняя левая — оригинал. На правой использовался лишь 1% вейвлетов. Критические цвета, как черный и белый, очень сложно передать таким количеством. Левый нижний — 5% вейвлетов, средний динозавр становится более резким, чем уменьшенный (он четкий на 3%) и увеличенный (он на 8%). Больше 10% ставить не имеет смысла, вейвлеты начинают приближать цвета, а не резкость. Последняя картинка тому доказательство, на ней использовано 20% вейвлетов. Если части изображения были смонтированы с изначально разной резкостью — это можно будет заметить. Увеличили картинку — проиграли в резкости, уменьшили — наоборот всё стало слишком резким. Даже если взять две фотографии снятые на камеру с автофокусом из одной точки — они будут отличаться по резкости из-за погрешности автофокуса. DWT устойчив даже перед блюром, ведь редакторы ничего не знают про резкость исходных частей изображения.

На практике полезно рассматривать приближения с помощью 1%, 3% или 5% вейвлетов. На этом количестве перепады в резкости становятся достаточно заметны глазу, как видно на примере одного из участников соревнования по фотомонтажу, который не определяется другими методами, но заметен при вейвлет-преобразовании.

Фотошоп с Клинтон с одного из контестов по монтажу, который не палится большинством методов. Приненив 5% вейвлет-преобразование можно заметить небольшую разницу в резкости: торс становится резким, а лицо всё еще размытым. Объектив камеры не мог дать такого сильного смещения плоскости фокуса, так что скорее всего лицо не отсюда.

Как обмануть

Сделать фотографии с одной точки, одним объективом с фиксированным фокусом и сразу обработать в RAW. Редкие студийные условия, но всё может быть. Сколько вон лет разбирали всякие видео с Усамой Бен-Ладеном, целые книги писали.

Изображение очень маленькое. Чем меньше изображение — тем сложнее его анализировать вейвлетами. Картинки меньше 200х200 пикселей можно даже не пытаться прогонять через DWT.

Заключение

Погружаясь в тему Image Forensics начинаешь понимать, что любой из методов можно обмануть. Одни легко обходятся с помощью пережатых до 10 шакалов JPEG'ов, другие цветокоррекцией, блюром, ресайзом или поворотом изображения на произвольные углы. Оцифровка журнала или TV-сигнала тоже добавляет ошибок в исходник, усложняя анализ. И тут вы начинаете понимать:

Вполне возможно отфотошопить изображение так, что никто не докажет обратное. Но для этого надо не быть глупеньким.

Зная эти методы, можно скрыть монтаж настолько, чтобы потом сказать в стиле пресс-секретаря президента: «эти картинки — лишь домыслы ангажированной кучки людей, мы не видим на них ничего нового». И такое вполне вероятно.

Но это не значит, что занятие полностью бесполезно. Здесь как в криптографии: пока те, кто делает фейки не знают матчасти так же глубоко — сила на стороне знаний, математики и анализа.

Приглашаю экспертов высказаться в комментарии. При подготовке поста я написал нескольким разбирающимся в теме профессионалам в лички, но ответа до сих пор не получил.

Ну а чтобы стимулировать новые посты, подпишитесь на рассылку или пошарьте этот пост у себя. Специльно сделал удобные кнопочки чуть ниже. Так я буду видеть, что всё это хоть кому-то интересно.

vas3k.ru

Как определить подлинность фото | Новый репортер.org

От качества фотографий в СМИ зависит очень многое. И речь идет не о том, насколько журналисты/фотокоры умеют избегать штампов и ловить момент, а о банальных вопросах этики – насколько создатели снимков честны и принципиальны.

Совсем небольшое дополнение фотографа, ретушь или размытие могут привести к тому, что издание потеряет доверие читателей, а вернуть репутацию очень не просто. Обратите внимание на несколько примеров, о которых рассказывается в отчете Фонда Нимана, посвященном как раз вопросам фальсификации фотографий.

В 2004 году Associated Press опубликовало вот этот снимок, сделанный во время наводнения в Китае, не заметив ничего подозрительного.

Через некоторое время в редакции раздался звонок читателя из Финляндии, которому фотография показалась странной.

Фотограф признался, что действительно смошенничал — поднял уровень воды с колен людей до уровня талии для достижения большего драматического эффекта. Сотрудничество с ним было прекращено.

Был уволен из Associated Press и автор этого снимка.

За то, что попытался скрыть свой промах и убрал собственную тень.

Сегодня заметить изменения в фотографиях становится все труднее, однако несколько моментов все же стоит помнить каждому редактору – чтобы не допустить публикации некачественного контента.

1. Присмотритесь к цветам и оттенкам на стыках разных частей изображения. Если часть фотографии была вставлена, то ее цветовая гамма будет отличаться от всего остального в кадре.

2. Кожа и форма тела не совершенны. А потому если лицо у героя снимка без изъянов, скорее всего, над ним поработали в фотошопе.

3. Размытые участки. Как раз момент, о которым мы писали выше. Реальные изображения могут быть размытыми, но не в маленьких участках.

4. Проверьте пропорции – очень часто невооруженным глазом можно заметить последствия обработки.

5. Посмотрите на части тела, углы и формы. Если что-то вам кажется неестественным, неправильным, каким-то неудобным, скорее всего, эта часть позаимствована из другого снимка.

6. Размеры в пикселях. Процесс достаточно трудоемкий, но все же – части, которые были вырезаны и вставлены, вполне могут иметь другое разрешение, нежели остальная часть картинки.

7. Тени. А это как раз наш второй случай. Присмотритесь – все ли объекты отбарсывают тень и в тех ли местах, где полагается природой.

8. Ветер. Если ветки деревьев отчетливо наклоняет ветер, а волосы людей при этом остаются на месте, это – явный признак картинки, созданной из нескольких частей.

И немного о воровстве, которое в век Интернета становится настоящим бедствием. Хорошо, если вы, как участники выставки “Ворованные фотографии”, найдете тех, кто ваши снимки позаимствовал, и сумеете доказать это в суде. А если картинка кажется вам знакомой, но где вы ее видели, непонятно? Сервис tineye.com поможет определить достаточно точно, была ли данная фотография уже опубликована в сети, когда и где именно.

Чтобы не попасться на воровстве, используйте бесплатные фотобанки, о которых мы рассказывали здесь.

Несколько советов по поводу того, как определить подлинность фотографий, полученных пользователями, дает BBC:

«Узнайте номер телефона автора письма и постарайтесь ему/ей дозвониться. Может ли автор детально описать сюжет снимка? (Соответствует ли описание тому, что, по данным информационных агентств, произошло в действительности?). Выясните, кто делал фотографии и каким фотоаппаратом были сделаны эти снимки?

Проверьте разрешение фотографии. Обычно файлы, полученные при помощи цифровой камеры, имеют разрешение 2000 на 1200 пикселей и больше. Чем меньше разрешение, тем больше вероятность того, что размер снимка был изменен.

Остерегайтесь фотографий нестандартных размеров — они могут быть получены от информационных агентств. Например, новостные фото на портале Yahoo обычно 380 пикселей в ширину и 345 в высоту».

Знаете ли вы какие-либо методы борьбы с фотомошенничеством?

newreporter.org

Как в интернете узнать подлинность фото и распознать фейк

Сегодня журналистам приходится иметь дело с большим количеством слухов, фейковых новостей и фальшивых фотографий — профессиональные медиа часто и сами участвуют в их распространении, непреднамеренное вводя в заблуждение читателей. После этого доверие к СМИ может падать, особенно опасно распространять ложные материалы при острых ситуациях в стране или стихийных бедствиях.

Интернет, с одной стороны, увеличивает количество ложной информации (в первую очередь, речь идет о данных, взятых из соцсетей), а с другой — предоставляет много цифровых инструментов для ее проверки.

С помощью нескольких онлайн-инструментов можно проверить на подлинность фотографии, "вытянуть" из них как можно больше данных и найти больше информации о человеке:

Findexif.com — бесплатный сервис, на который можно загрузить фотографию или дать ссылку на нее — он определит EXIF-данные (сведения, когда было сделано фото, каким устройством, параметры изображения, для некоторых фото можно определить и место съемки).

Foto Forensics — веб-сайт, который может сделать error level analysis (ELA), то есть найти области "дорисованные" на изображении или вставлены в него при редактировании. После обработки программа выдает фотографию, где редактируемые фрагменты будут выделяться на фоне других. Кроме того, программа также предоставит EXIF- данные фотографии.

Google Search by Image — обратный поиск изображений, сюда можно загрузить фото, чтобы найти его оригинальный источник и посмотреть, где оно еще публиковалось.

TinEye — еще один инструмент для обратного поиска.

JPEGSnoop — программа, которая устанавливается на компьютер (работает только для Windows), также позволяет посмотреть метаданные не только изображений, но и форматов AVI, DNG, PDF, THM. Программу можно использовать для многих целей, например, она позволяет увидеть, редактировалось ли изображение, выявить ошибки в поврежденном файле т.п.

Алгоритм проверки изображения

1. Установить автора либо первоисточник фотографии. Наиболее очевидный и обычно наиболее эффективный путь сделать это — связаться с тем, кто загрузил фотографию или прислал в редакцию, и спросить, сам ли человек сделал фото. Также обязательно нужно поискать фотографию через обратный поиск изображений. Google показывает также похожие картинки, что иногда помогает увидеть, была ли фотография отредактирована. Ссылка на фото в большом разрешении, как правило, и является первоисточником.

2. Необходимо проверить саму личность, которая распространяет информацию. Для того чтобы собрать о ней больше информации, есть несколько различных ресурсов, и хотя большинство из них создано для жителей США, есть и такие, которые будут полезны для разных стран. Например, Pipl.com — предназначен для поиска "интернет — следа" пользователя, помогает его идентифицировать, найти фотографии. Программа производит поиск во всех социальных американских сетях (Facebook, LinkedIn, MySpace) — для этого нужно ввести имя и фамилию латиницей. Особенность программы в том, что она ведет поиск по "глубокому интернету" (deepWeb), который игнорируется обычными поисковыми системами и недоступен для пользователей.

Дополнительный полезный ресурс WebMii — ищет ссылку с именем человека, дает рейтинг "веб — видимости", с помощью которого можно установить фейковые аккаунты. Благодаря инструменту каждый может найти упоминание своего имени на иностранных ресурсах.

Для поиска в Рунете можно использовать сервис people.yandex.ru.

3. Следующим шагом в проверке фото должно быть подтверждение места, даты и приблизительного времени, когда было сделано фото. Легче спросить самого автора или попросить сделать его другие снимки этого места — если он доступен для связи. Далее проверить исходные данные с помощью указанных выше программ. Журналистам, которые хорошо разбираются в цифровой фотографии, будут понятны многочисленные параметры, предоставленные этой программой. Для остальных более нужная информация — это время, место съемки, фотоаппарат. Если метаданные недоступны, нужно внимательно изучить снимок: номера машин, погодные условия, ландшафт, стиль одежды, рекламные объявления, здания, магазины — эти детали помогут определить местность, а иногда и становятся свидетельством подделки.

В проверке фотографии есть еще один казалось бы очевидный момент — подтверждение, что фотография действительно изображает то, о чем заявлено. Ведь она может быть настоящей, а вот описание не будет соответствовать действительности. Так, во время урагана Сэнди в Твиттере распространяли такую фотографию:

На ней изображено, как будто во время шторма трое солдат стоят у мемориала неизвестному солдату. Но на самом деле фото было сделано месяцем ранее — установить это помог обратный поиск изображения.

Разобраться в локациях поможет Google Maps или Wikimapia (краудсорсинговая версия GoogleMaps). Полезный сайт Panoramio — здесь можно разместить фотографии, обозначив их географические координаты (сайт интегрирован с картами Google).

Geofeedia — инструмент "куратор социальных сетей", который агрегирует результаты не по ключевым словам или хэштегам, а по месту расположения, которое вы задаете. Сервис обрабатывает сообщения из Twitter, Flickr,

Youtube, Instagram и Picasa, присланные с использованием GPS, и затем представляет их в виде коллажа. Сервис платный, бесплатной является только демо-версия.

Еще один способ проверить фото — посмотреть, какие погодные условия были в заявленном месте в конкретный день. Здесь полезной станет поисковая система Wolfram Alpha. Об этом инструменте стоит сказать подробнее — это даже не поисковая система, а база знаний с научным уклоном. Интеллектуальный робот, который может отвечать на самые разные вопросы. Но он ориентируется только в темах, касающихся точной, энциклопедической информации, а не текущих событий. Ссылок на другие сайты не предоставляет, а выдает уже готовый вариант ответа. Работать с Wolfram Alpha нужно на английском языке.

"Вольфрам Альфа" предназначен не только для проверки погоды, этот инструмент может быть полезным как в повседневной работе журналиста, так и для развлечения. Старайтесь всесторонне изучать информацию, полученную из непроверенных источников. Да, возможно, данные окажутся поддельными, и вам не удастся опубликовать сенсационную новость. Зато вполне может получиться статья с разоблачением.

www.obozrevatel.com

Онлайн проверка картинок на уникальность

Доброго времени суток, дорогие читатели блога. Когда-нибудь, для какого-либо дела, вам могут понадобиться уникальные картинки, например, для размещения объявлений на крупных торговых площадках, где проходят модерацию только объявления с уникальными картинками.

По этой причине, в сегодняшнем выпуске я хотел бы рассказать вам как пользоваться сервисом TinEye, позволяющим в режиме онлайн проверять картинки на уникальность.

Онлайн проверка картинок на уникальность

Произвести поиск подходящих картинок, вы можете на бесплатном фотостоке для скачивания изображений Pixabay. Далее чтобы приступить к проверке на уникальность картинки, перейдите на сайт TinEye.

Затем, на главной странице сайта необходимо выбрать один из двух способов, того как загрузить картинку для проверки:

  1. Указать ее в файловой системе компьютера, нажав кнопку, обозначающую стрелку;
  2. Либо вставить прямую ссылку на изображение и нажать на значок, обозначающий лупу.

После того как вы укажите нужное изображение, сервис начнет анализ на уникальность и через некоторое время выдаст вам результат. На скриншоте, который вы увидите чуть ниже, показан результат проверки, он означает, что проверенная мной картинка не уникальна, где строчка «106 results» означает, что она встречается на 106-ти сайтах, а строчка «Searched over 15.522 billion images in 1.2 seconds», в переводе с Английского означает «Проверено 15 миллиардов 522 миллионов изображений за 1.2 секунды».

Повысить уникальность картинки, вы можете немного ее подредактировав, для этого отлично подойдет онлайн-фотошоп на русском языке Аватан.

Чтобы вы могли распознать уникальную картинку, на всякий случай я решил показать вам как она должна выглядеть в результат анализа. Если в результатах анализа вы увидите надпись «0 results», то это будет означать, что она полностью уникальна и ее можно использовать в своих целях.

В следующем выпуске я постараюсь написать пост о том, как оптимизировать изображение. А если у вас остались вопросы, то пишите мне в комментариях и я с радостью на них отвечу. Всем доброго дня и удачи.

yrokicompa.ru

Руководство для журналиста – как проверить подлинность фотографии

Важные новости в СМИ иногда вдохновляют некоторых людей на одурачивание публики поддельными изображениями, поэтому каждому журналисту следует знать, как проверить подлинность фотографий и видео.

Предлагаем вашему вниманию - Мэнди Дженкинс и Крейг Сильверман, цифровые журналисты, которые совершенствуют мастерство проверки достоверности онлайн-материала.

Дженкинс, редактор социальных новостей для Huffington Post, и Сильверман, директор редакции OpenFile.ca и автор книги Regret the Error, поделились советами во время своей презентации "Опознание подделки для журналистов" на недавней конференции Ассоциации онлайн-новостей (ONA) в Бостоне.

Вот советы для проверки изображения:

  1. Посмотрите, какая информация прилагается к изображению в файле exif (exchangeable image file format), например, как здесь.

  2. Проверьте, была ли фотография отредактирована. Воспользуйтесь сайтом для определения подлинности изображений Image Error Level Analyzer, который, основываясь на качестве фотографии, определяет, подвергалась ли она обработке - изображения, сохраненные в расширении jpeg, теряют качество каждый раз, когда их сохраняют; если кто-то наложил часть одной фотографии на другую, то разные части изображения будут иметь разные уровни качества.

  3. Сопоставьте место, где предположительно была сделана фотография с картами и существующими изображениями этого района. Изучите метеосводки и тени, чтобы убедиться, что изображенные условия согласуются с указанными датой и временем.

  4. Проверьте одежду, здания, языки, на которых сделаны надписи, номерные знаки, транспортные средства, знаки и другие элементы на фотографии или в видео, чтобы убедиться в том, что изображение соответствует тому, что в нем заявлено.

  5. Посмотрите историю автора снимка и его местоположение, чтобы проверить, имеется ли у него надежный контент - быть может он «тащит» его у других.

  6. Есть ли у фотографа изображения снятые до и после проверяемого вами фото, которые можно использовать в качестве сравнения?

  7. Свяжитесь с фотографом по телефону или по Skype, чтобы обсудить изображение. Менее вероятно, что люди будут вам лгать, когда разговаривают с вами напрямую.

  8. Остерегайтесь захватывающего снимка, пойманного в переломный момент. Если он слишком хорош для того, чтобы быть правдой, то так оно может и быть.

  9. Используйте обратный поисковик TinEye, который определяет, откуда изображение, как его использовали, существуют ли модифицированные версии изображения или версии с более высоким разрешением.

Слайды с презентации Дженкинса и Сильвермана можно посмотреть здесь.

ijnet.org

6 способов онлайн-анализа изображений | Новый репортер.org

Перепроверка данных – один из важнейших аспектов в работе медиаспециалиста. Наша подборка простых онлайн-сервисов для анализа фотографий поможет журналисту и редактору получить больше информации об изображении — первоисточник, место съемки, название устройства, на которое снимок был сделан, и так далее.

Фотографии из социальных сетей

Одним из способов проверки подлинности аккаунта в соцети является анализ фотоконтента страницы. К примеру, аватара.

Узнать, действительно ли изображение принадлежит данному пользователю или было взято из Сети, можно следующим образом.

1. Левой кнопкой мыши нажимаем на фотографию и копируем ее адрес.

2. Открываем поиск Google по картинкам и вставляем ссылку.

3. Получаем результат: источник фотографии, похожие изображения, дату съемки и так далее.

Таким же образом, указывая ссылку или загружая фотографии, в Google-изображениях можно искать любые картинки.

Сервис tineye.com работает аналогичным способом, но информация здесь собрана более компактно. Можно сразу увидеть дату публикации изображения на различных сайтах и даже сделать сортировку результатов – «наиболее измененные», дата загрузки, размер картинки.

Izitru.com анализирует загруженные на сервис фотографии. С его помощью можно узнать, оригинал ли это, на какую камеру снято изображение и где. Информацию по последним двум пунктам сервис предоставляет лишь в том случае, если фото загружено непосредственно с фотоаппарата, до этого не обрабатывалось и не было выложено в Интернете.

Онлайн-инструменты

работают с EXIF-данными (англ. Exchangeable Image File Format) — стандарт, позволяющий добавлять к изображениям и прочим медиафайлам дополнительную информацию (метаданные), комментирующую этот файл, описывающий условия и способы его получения, авторство и т. п.).

 

Тип файла, размер, цвета, изменения.

А какими инструменты для верификации изображений используете вы?

newreporter.org


.